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The photonic force microscope (PFM) is an opto-mechanical technique that uses an optically trapped probe
to measure forces in the range of pico to femto Newton. For a correct use of the PEM, the force field has to be
homogeneous on the scale of the Brownian motion of the trapped probe. This condition implicates that the
force field must be conservative, excluding the possibility of a rotational component. However, there are cases
where these assumptions are not fulfilled. Here, we show how to expand the PFM technique in order to deal
with these cases. We introduce the theory of this enhanced PFM and we propose a concrete analysis workflow
to reconstruct the force field from the experimental time series of the probe position. Furthermore, we experi-
mentally verify some particularly important cases, namely, the case of a conservative and of a rotational force

field.
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I. INTRODUCTION

A focused optical beam—an optical tweezer—allows one
to manipulate a wide range of particles—including atoms,
molecules, DNA fragments, living biological cells, and or-
ganelles within them—with applications to many areas, such
as molecular biophysics, genetic manipulation, microassem-
bly, and micromachines [1-3]. One of the most exciting ap-
plications has been the possibility to investigate and engineer
the mechanical properties of microscopic systems—using,
for example, optical traps as force transducers for mechani-
cal measurements in biological systems [4—8].

In the early 1990s various kinds of scanning probe mi-
croscopy were already established. The scanning tunneling
microscope (STM) [9] permits one, for example, to resolve
at the atomic level crystallographic structures [10] and or-
ganic molecules [11]. The atomic force microscope (AFM)
[12] has been successfully employed to study biological and
nanofabricated structures, overcoming the diffraction limit of
optical microscopes. However, all these techniques required
a macroscopic mechanical device to guide the probe.

A new kind of scanning force microscope that uses an
optically trapped dielectric microsphere as a probe was pro-
posed in [13,14]. This technique was later called photonic
force microscope (PFM) [15]. In a typical setup, the probe is
held in an optical trap, where it performs random movements
due to its thermal energy. The analysis of this thermal motion
provides information about the local forces acting on the
probe. The three-dimensional probe position can be recorded
through different techniques, which detect its forward or
backward scattered light, even though there are some issues
to be taken into account in the backscattered case [16]. The
most commonly used are a quadrant photodiode, a position
sensing detector, or a high-speed video camera [3].

The PFM has been applied to measure forces in the range
of femto to pico Newton—this is well below what can be
achieved with techniques based on microfabricated mechani-
cal cantilevers, such as AFM [17]—in many different fields
with exciting applications, for example, in biophysics, ther-
modynamics of small systems, and colloidal physics
[4-8,18-26].
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For small displacements of the probe from the center of
an optical trap, the restoring force is proportional to the dis-
placement. Hence, an optical trap acts on the probe like a
Hookeian spring with a fixed stiffness, which can be charac-
terized with various methods [3,27]. The correlation or
power spectrum method, in particular, is considered the most
reliable [27], allowing one to determine the trap stiffness by
applying Boltzmann statistics to the position fluctuations of
the probe, relying only on the knowledge of the temperature
and the viscosity of the surrounding medium [13-15,28,29].

Assuming a low Reynolds number regime [30,31], the
Brownian motion of the probe in the optical trap is described
by a set of Langevin equations as follows:

yi(r) + Kr(f) = \2Dyh(r), (1)

where r(t)=[x(r),y(z),z(r)] is the probe position, y=67R7
is its friction coefficient, R is the probe radius, 7 is the
medium viscosity, K is the stiffness matrix, \e"ﬁyh(t)
=\s’%y[hx(t),hy(t),hz(t)] is a vector of independent white
Gaussian random processes describing the Brownian forces,
D=kgT/ vy is the diffusion coefficient, 7 is the absolute tem-
perature, and kjp is the Boltzmann constant. The orientation
of the coordinate system can be chosen in such a way that the
restoring force is independent in the three directions, i.e.,
K=diag(k,,k,.k,). In this reference frame the stochastic dif-
ferential equations (1) are separated and without loss of gen-
erality their treatment can be restricted to the x projection of
the system.

The autocorrelation function (ACF) of the solution to
equations (1) in each direction reads

((Ox(z + An)) = Dkle-kx\ml/v, 2)
where k, is the trap stiffness. Experimentally the trap stiff-
ness is found by fitting the theoretical ACF (2) to the one
obtained from the measurements. Using the Wiener-
Khintchine theorem, the power spectral density (PSD) can
now be calculated as the Fourier transform of the ACF as
follows:
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FIG. 1. (Color online) Examples of force fields that cannot be correctly probed with a classical PEM because they vary on the scale of
the Brownian motion of the trapped probe, i.e., in a range of tens to hundreds of nanometers (a possible range is indicated by the red bars):
(a) forces produced by a surface plasmon polariton in the presence of a patterned surface on a 50-nm-radius dielectric particle (reproduced
from [32]); (b) trapping potential for a 10-nm-diam dielectric particle near a 10-nm-wide gold tip in water illuminated by a 810 nm
monochromatic light beam (reproduced from [34]); and (c) force field acting on a 500-nm-radius dielectric particle in the focal plane of a

highly focused Laguerre-Gaussian beam (reproduced from [35]).
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where f.=k,/(27y) is the corner frequency.

A constant and homogeneous external force f,,,, acting
on the probe produces a shift in its equilibrium position in
the trap. The value of the force can be obtained as

fexl,x = kx<x(t)>’ (4)

where (x(7)) is the probe mean displacement from the previ-
ous equilibrium position.

For a correct use of the PFM, the force field to measure
has to be homogeneous on the scale of the Brownian motion
of the trapped probe, i.e., in a range of tens to hundreds of
nanometers depending on the trap stiffness. This condition
implicates that the force field must be conservative, exclud-
ing the possibility of a rotational component. However, there
are cases where these assumptions are not fulfilled as it is
illustrated in Fig. 1. The force field can vary in the nanom-
eter scale, for example, when one considers the force fields
produced by a surface plasmon polariton [26], by a patterned
optical near-field landscape at an interface decorated with
resonant nanostructures [32,33] [Fig. 1(a)], or by a laser-
illuminated tip [34] [Fig. 1(b)]. It can also be nonconserva-
tive in the presence of a rotational force (torque), such as the
ones produced on a probe by a beam which carries orbital
angular momentum [35] [Fig. 1(c)] or by certain fluid flows
[36].

Here, we extend the PFM technique to deal with these
cases. After introducing the theory (Sec. II), we propose a
concrete analysis workflow to reconstruct the force field act-
ing on the probe from the experimental time series of its
position and we apply it to some numerically simulated data
(Sec. III). Finally, we present experimental results for two
fundamental cases, namely, a conservative and a rotational
force field (Sec. IV).

P(f) 3)

II. THEORY

In the presence of an external force field f,.(r(z)), Eq. (1)
can be written in the form:

yi(£) = £(r()) + \2Dyh (), (5)

where the total force acting on the probe f(r(r))="Ff(r (7))
—Kr()=[f(r(1).f,(r(r))] depends on the position of the
probe itself, but does not vary over time. We limit our analy-
sis to a bidimensional system, because it is the most interest-
ing from the applied point of view. However, our approach
can be generalized to the tridimensional case.

The force f(r(7)) can be expanded in a Taylor series up to
the first order around an arbitrary point T as follows:

[fx *f)} {r?xfx(?) 0, ,m]
£(x (1)) = i+ .
£® I Lan® anm

), (6)

where f; and J; are the zeroth-order expansion, i.e., the force
field value at the point T, and the Jacobian of the force field
calculated in T, respectively.

In a PFM the probe is optically trapped and, therefore, it
diffuses due to Brownian motion in the total force field (the
sum of the optical trapping force and external force fields). If
fz # 0, the probe experiences a shift in the direction of the
force. After a transient time has elapsed, therefore, the par-
ticle settles down in a new equilibrium position of the total
force field, such that f;=0. As seen in the Introduction, the
measurement of this shift allows one to evaluate the homo-
geneous force acting on the probe in the standard PFM. As-
suming, without loss of generality, T=0, the statistics of the
Brownian motion near the equilibrium point can be analyzed
in order to reconstruct the force field up to its first-order
approximation.

We notice that, although any force field in the proximity
of a potential minimum can be approximately described in
the form given by Eq. (6), for the following considerations to
be valid the particle motion must be confined in a potential
well deep enough (at least various kzT), where only one
minimum is present. More complex potentials can be char-
acterized with other techniques [37,38], which, however,
cannot take into account the rotational component of the
force field.

X[r(t) =F]+o(r =T
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FIG. 2. Stability diagram. Assuming ¢>0, the stability of the
system is shown as a function of the parameters )/ ¢ and A/ ¢.
The white region satisfies the stability conditions (9). The dashed
lines represent the A¢=|Q| and A¢p=¢ curves. The dots represent
the parameters that are further investigated in Figs. 3-5.

A. Brownian motion near an equilibrium position

The first-order approximation to Eq. (5) near a stable
force field equilibrium point, T=0, is

i(r) = y ' Jor(t) + V2Dh(s), (7)

where r(t)=[x(¢),y(¢)], h(t)=[h(?) ,h,(t)], and J is the Jaco-
bian calculated at the equilibrium point. According to the
Helmholtz theorem, under reasonable regularity conditions
any force field can be separated into its conservative (i.e.,
irrotational) and nonconservative (i.e., rotational or solenoi-
dal) components. The two components can be identified if
the coordinate system is chosen such that d,f,(0)=—4,f,(0).
In this case, the Jacobian J, normalized by the friction coef-
ficient 7y reads

- QO
&, } )

—1 _
Y Jo—{_Q _¢y

where ¢,=k,/y and b=k, /vy, k,=—3,f,(F) and k,=-3d,f,(F),
and Q= 'y‘lﬁ)fx('f') =—'y‘lz9xfy(1"). In Eq. (8) the rotational
component, which is invariant under a coordinate rotation, is
represented by the nondiagonal terms of the matrix: () is the
value of the constant angular velocity of the probe rotation
around the z axis due to the presence of the rotational force
field [35]. The conservative component, instead, is repre-
sented by the diagonal terms of the Jacobian and is centrally
symmetric with respect to the origin. Without loss of gener-
ality, we impose that the stiffness of the trapping potential is
higher along the x axis, i.e., k,>k, and, therefore, ¢,> ¢,.
The considered equilibrium point is stable if

Det(Jo) = ¢* - A4’ + Q* =0,

Tr(Jy) =-2¢ =0, )

where ¢=(¢,+,)/2 and Ap=(¢,~ ¢,)/2. The fundamental
condition required to achieve the stability is ¢»>0. Assuming
that this condition is satisfied, the behavior of the optically
trapped probe can be explored as a function of the param-
eters {)/ ¢ and A¢/ ¢. The stability diagram is shown in Fig.
2. The standard PFM corresponds to A¢=0 and (1=0. When
a rotational term is added, i.e., ) #0 and A¢=0, the system
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FIG. 3. (Color online) Brownian motion in a force field [Eq.
(7)]. The arrows show the force field vectors for various values of
the parameters A¢/ ¢ and /¢, The shadowed areas show the
probability distribution function (PDF) of the probe position in the
corresponding force field.

remains stable [35]. When there is no rotational contribution
to the force field (1=0) the equilibrium point becomes un-
stable as soon as A¢=¢. This implicates that ¢, <0, and
therefore the probe is not confined in the y direction any-
more. In the presence of a rotational component ({) # 0) the
stability region becomes larger; the equilibrium point now is
unstable only for Ag=¢*—Q2.

Some examples of possible force fields are presented in
Fig. 3. When (=0 the probe movement can be separated
along two orthogonal directions. As the value of A¢ in-
creases the probability density function (PDF) of the probe
position becomes more and more elliptical, until for A¢
= ¢ the probe is confined only along the x direction and the
confinement along the y direction is lost.

If A¢p=0, the increase in ) induces a bending of the force
field lines and the probe movement along the x and y direc-
tions is not independent. For ()= ¢, the rotational compo-
nent of the force field dominates over the conservative one.
This is particularly clear when A¢# 0: the presence of a
rotational component covers the asymmetry in the conserva-
tive one, since the PDF assumes a more rotationally symmet-
ric shape.

B. Enhanced photonic force microscope

As we already mentioned in the Introduction, the most
powerful analysis method is based on the study of the corre-
lation functions—or, equivalently, the power spectral
density—of the probe position time series. In this section, we
derive the correlation matrix in the coordinate system con-
sidered in the previous section, where the conservative and
rotational components are readily separated. We then derive
the same matrix in a generic coordinate system and identify
some functions that are independent of the choice of the
coordinate system. For completeness, we will also present
the power spectral density matrix.

1. Correlation matrix

The correlation matrix of the probe motion near an equi-
librium position can be calculated from the solutions of Eq.
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(7), whose eigenvalues are \| ,=—¢=+A¢*~Q? and whose
eigenvectors are vy ,=[Q,Ap+Ap*-0?].

Treating h(z) as a driving function, the solution of Eq. (7)
is given by

r(t)=\2D| W(EHW(s)h(s)ds, (10)

-0

where

At

—o0

(r(ADr(0)) = <2D

where the superscript 1 indicates the Hermitian. Solving this
system, we have
Ag

Qz—Aqbz —azz)C(At)

—|At] 02— 2AAH?
rxx(At)=De |i< oclé

¢

ad 1_%)S(|m|>], (13)

ALY {(Qz _ a2A¢2 azA_d’

0 _Ap + 4 )C(At)

Ag

+a27fb 1+?)8(|At|)}, (14)

% S0+ aZ%’[C(At) + 8(|At|)]_

(15)

P % - S(A7) + a2A7f/)[C(At) + S(lAfD]_

(16)
where

a’= L (17)
¢+ (0~ A¢?)
is a dimensionless positive parameter,
cos(V|Q2 - Ag¥n),
CH=\1,
cosh(\[|Q* = Ag?r),

02> A¢?
Q?=A¢ (18)
0> < A¢?,

and

sin(v|Q*-A¢%1)
V2-ag?|

S(t) = ¢t»
sinh(V]|Q*-A¢?|1)

TRy

VQ2-a¢?

, 0> A
0% =Ag? (19)
Q0> < Ag?.
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W) Q Q {e}‘lt 0 }
1) =
A+ VAPF = Q> Ap—VAF -Q* || 0 M

(1

is the Wronskian of the system.

Since we are assuming r(7) to be a stationary stochastic
process, the correlation matrix (r(z+Af)rf(f)) can be ob-
tained by taking the ensemble average (r(A7)r'(0)) as fol-
lows:

0
W(AHW ™ (¢h(:")dr’ J h*(t")w—l*(t")WT(O)dr">, (12)

In Fig. 4 these functions are plotted for different ratios of
the conservative and rotational components of the force field.
Some cases have already been studied experimentally. For
A¢p=0 [35], the ACFs and cross-correlation functions
(CCFs) are rxx(At)zryy(At)zDe‘(”lA" cos(QAr)/¢ and
rxy(At)=—ryx(At)=De‘¢‘A’| sin(Q A7)/ ¢, respectively. Their
zeros are at Ar=n{)/ 7 and At=(n+1/2)Q/m, respectively,
with n integer. However, when the rotational term is smaller
than the conservative one ({1 < ¢) the zeros are not distin-
guishable due to the rapid exponential decay of the correla-
tion functions. As the rotational component becomes greater
than the conservative one () > ¢), a first zero becomes vis-
ible in the ACFs and CCFs and, as () increases even further,
the number of oscillations grows. Eventually, for 1> ¢ the
sinusoidal component dominates. The conservative compo-
nent manifests itself as an exponential decay of the magni-
tude of the ACFs and CCFs.

When (=0, the movements of the probe along the x and
y directions are independent. The ACFs behave as r,(Ar)
=De %A/ ¢, and 1, (Ar)=De~ 2/ §,, while the CCFs are
null, r,,(Af)=r,,(Ar)=0. In Fig. 2 this case is represented by
the line )=0.

When both Q) and A¢ are zero, the ACFs are r, (Ar)
=ryy(At)=De‘¢|A’|/q§, and the CCFs are null, r,(Ar)
=r,,(A1)=0. The corresponding force field vectors point to-
wards the center and are rotationally symmetric.

When both () and A¢ are nonvanishing, the effective an-
gular frequency that enters the correlation functions [Egs.
(13)=(16)] is given by \|Q?—A¢?*|. Hence, the difference in
the stiffness coefficients along the x and y axes effectively
influences the rotational term. A limiting case is when |(}|
=A¢. This case presents a kind of resonance between the
rotational term and the stiffness difference.

2. Correlation matrix in a generic coordinate system

The expression for the ACFs and CCFs (13)-(16) were
obtained in a specific coordinate system, where the conser-
vative and rotational component of the force field can be
readily identified. However, typically the experimentally ac-
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quired time series of the probe position required for the cal-
culation of the ACFs and CCFs are given in a different co-
ordinate system, rotated with respect to the one considered in
the previous section. If a rotated coordinate system is intro-

duced, such that
—sin @ || x
|
cos @ ||y

x' cos 6

y' | |sin@
the correlation functions in the new system are obtained as
linear combinations of Egs. (13)-(16) as follows:

ro (A7) = (cos 6)%r, (Af) — cos 6sin Or,,(At)
—sin 6 cos Or,, (A7) + (sin 6)*r,, (A1), (21)

/(A1) = (sin 6)°r, (A1) + sin 6 cos Or, (A1)
+cos 6sin Or, (A1) + (cos 6)*r,, (A1), (22)

ryry

(Ar) = cos Osin Or, (Ar) + (cos ﬁ)zrxy

— (sin 6)*r,, (A1) — sin 6 cos 0r,,

(A1)
(Ar), (23)

rx/),r

ryre(Ar) =sin 6 cos Or (Ar) - (sin 6)*r,, (A7)
+ (cos ﬁ)zryx(At) —cos #sin Ory (A1), (24)

which in general depend on 6. However, it is remarkable that
the difference of the two CCFs, Dccp(Af)=r,,(At)
-1y, (Af), and the sum of the ACFs, S,cp(Af)=r, (At
+7y1,/(At), are invariant as follows:

N

DCCF(AI) = 2D %S(A[), (25)

. 2D
P(f/)=R-R'=

where the property H(f)-H'(f)=I, has been used. We notice
that the PSD matrix could have been obtained as a Fourier
transform of the correlation matrix (Wiener-Khintchine theo-
rem).

III. DATA ANALYSIS WORKFLOW

In this section we propose a concrete analysis workflow to
reconstruct the force field from the experimental time series
of the probe position. Experimentally the time series of the
probe position is the only available information to recon-
struct the force field. Typically these data are obtained in an
arbitrary coordinate system, generally different from the one

(e + 2f) (o, + i27f) + Q2
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—|Ad| 02— a2A¢2
Sacr(Af) = 2De b [( QA )C(Al‘)
A 2
+ a2$8(|At|)] . (26)

These functions, presented in Fig. 5, are very similar to the
ones presented in Fig. 4; however, the latter depends on the
coordinate system choice.

Another two combinations of Eq. (21)—(24), which are
also useful for the analysis of the experimental data, namely,
the sum of the CCFs, Sccp(At, 0)=r,,(At)+1yr,s (A1), and
the difference of the ACFs, Dycp(Af,6)=r,.(Af)
—ry,yr(At), depend on the choice of the reference frame as
follows:

-0l

SCCF(AI’ 6) = 2D az%[C(At)
Q .
+ S(|At|)]<g cos(26) —sin(2 0)) , (27)

~¢|Ar|
4 az%ﬁ[C(AZ)

+ 8(|At|)]<% sin(26) + cos(20)). (28)

DACF(AI’ 0) =- 2De

Their plots are shown in Fig. 6. In particular, they deliver
information on the orientation @ of the coordinate system.

3. Power spectral density matrix
In the frequency domain Eq. (5) is given by
27fR(f) = JoR(f) + \2DH(/), (29)

and its solution is R(f)=\2D(i27fI,—J,)"'H(f), where I, is
the 2D unit matrix, and the corresponding PSD matrix as
follows:

b4+ Q7 Q[ — ¢, —idf]

b - +idmf]  Pr+4mf+Q* | (30)

of Sec. II B 1. These time series need to be statistically ana-
lyzed in order to reconstruct all the parameters of the force
field, i.e., ¢, A, and (), and the orientation of the coordinate
system. The detailed procedure to retrieve all this informa-
tion from the experimental data is presented in this section.

Let us suppose one has the time series of the probe posi-
tion in a generic coordinate system r'()=[x'(¢),y’(¢)]. In the
first place, we need to verify that the force field can be ex-
pressed in the form of Eq. (6) by checking that the potential
well is deep enough, i.e., the particle remains in it for a long
time, and the PDF has a Gaussian shape. If this is the case,
we can proceed with the following analysis. First, we evalu-
ate the parameters ¢, A¢, and (). Then, we transform the
coordinate system to the one presented in Sec. I B 1. Finally,
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we reconstruct the total force field. Eventually, the trapping
force field may be subtracted to retrieve the external force
field under investigation.

In order to illustrate this method we proceed to analyze
some numerically simulated data. The main steps of this
analysis are presented in Fig. 7. In Fig. 7(a) the PDF is
shown for the case of a probe in a force field with the fol-
lowing parameters: ¢=37 s™!, A$p=9.3 s~! (corresponding to
k=43 pN/um and k,=26 pN/um), 1=0, and #=30°. The
PDF is ellipsoidal due to the difference of the stiffness along
two orthogonal directions. In Fig. 7(b) the PDF for a force
field with the same ¢, A¢, and orientation but with ()
=37 s7! is presented. The presence of the rotational compo-
nent in the force field produces two main effects. First, the
PDF is more rotationally symmetric and its main axes un-
dergo a further rotation. Secondly, D¢p(At) is not null [Fig.

7(d)].

A. Evaluation of the parameters ¢, A, and Q

To evaluate the force field parameters ¢, A¢, and (), we
calculate the correlation matrix in the coordinate system
where the experiment has been performed,

, I _ rx'x’(At) rx’y’(At)>
(r'(Anr'"(0)) (Vyrxr(Al) () (31)
Then we calculate Dqcp(Af). As we showed in Sec. II, this
function is invariant with respect to the choice of the refer-
ence system, and it is different from zero only if () # 0. The
results are shown in Figs. 7(c) and 7(d) for the data shown in
Figs. 7(a) and 7(b), respectively. The three aforementioned
parameters can be found by fitting the experimental data to
the theoretical shape of this function. In particular, the expo-
nential decay of the function is related to the ¢ parameter;
the period of the superimposed oscillations is related to the
effective angular frequency V|A¢?—Q?|; and the sign of the
slope in Ar=0 gives the sign of ().

1
W
)
Lo
>
<
:
T
S
=
<
- 0 106 0 05-05 0 05
Q/p=0 Q/p=1 Q/Hp=2

FIG. 4. (Color online) Autocorrelation and cross-correlation
functions [Egs. (13)—(16)] for various values of the parameters
A¢/ ¢ and @/ ¢: r,, (black continuous line), r,, (black dotted line),
ry (gray—green in the online version-continuous line), and r,
(gray—green in the online version—dotted line).
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When Q=0, D-cp(Af) is null [Fig. 7(c)]. It cannot be
used to find the two remaining parameters. For =0, the
other invariant function is given by

e—¢|At\ ¢2 A¢2
R P W R W

Sacr(At)=2D S(Ar) |.

(32)

¢ and A¢ can be evaluated by fitting the data to Eq. (32).
The function (26) can also be used for the fitting of the three
parameters but cannot give information on the sign of (),

which must be retrieved from the sign of the slope at Ar=0

B. Coordinate system transformation

Although the values of the parameters ¢, A, and () are
now known, the directions of the force vectors are still miss-
ing. In order to retrieve the orientation of the experimental
coordinate system, we now use the orientation dependent
Scep(At, 0) and Dycp(At, 6). The best choice is to evaluate
the two functions for Ar=0, because the signal-to-noise ratio
is highest at this point.

2
Secr(0,6) = 2D3A—¢P cos(26) — sin(2 0)]

b Pl
2
Dy cr(0,6) = — ZD%%{% sin(26) + cos(ZH)} . (33)

The solution of this system delivers the value of the rotation
angle 6. If A¢=0, Eq. (33) is undetermined as a consequence
of the PDF radial symmetry. In this case any orientation can
be used. If 1=0, the orientation of the coordinate system
coincides with the axis of the PDF ellipsoid and, although
Eq. (33) can still be used, the principal component analysis
(PCA) algorithm [39] is a convenient alternative means to
determine their directions.

=0.5

Ad/d

-

=0

Ad/d

-1 0 1 -05 0

Qp=0 V=1

0.5 -0.5 0 0.5

/=2

FIG. 5. (Color online) Functions (25) and (26) independent from
choice of the reference system for various values of the parameters
A/ ¢ and O/ ¢p: Sycp(Atr) (black line) and Dcp(Ar) (gray—green
in the online version—line).
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D CCF(At)

ACF(At)

O [deq]

At [s]

FIG. 6. Functions that depend on the orientation of the coordi-
nate system [Eqgs. (27) and (28)] for various values of the angle with
respect to the coordinate system in Sec. II B 1. The markers high-
light the values for Ar=0.

C. Reconstruction of the force field

Now everything is ready to reconstruct the unknown force
field acting on the probe around the equilibrium position in
an area comparable with the mean square displacement of
the probe. From the values of ¢ and A, the conservative
forces acting on the probe result f.(x,y)=-(k.xe,+kye,)
and, from the values of (), the rotational force is f.(x,y)
=((ye,~xe,). The total force field is

f(x’y) = fc(x’y) + fr(x’y) = (_ kxx + Qy)ex - (kyy + Qx)eyx‘
(34)

in the rotated coordinate system [Figs. 7(e) and 7(f)]. Now
the rotation (20) can be used in order to have the force field
in the experimental coordinate system. The unknown com-
ponent can be easily reconstructed by subtraction of the
known ones, such as the optical trapping force field.

IV. EXPERIMENTAL RESULTS

For an experimental verification of our conclusions, we
analyze the Brownian motion of an optically trapped poly-
styrene sphere in the presence of an external force field gen-
erated by a fluid flow [36]. In general a hydrodynamic flow
can be decomposed into a translational (conservative) com-
ponent and a vorticity (rotational) one, which are present in
superposition. The data workflow described in the previous
section—namely, the fitting of the parameters A¢ and
Q—permits one to identify and quantify the two contribu-
tions starting from the data about the Brownian motion of the
probe and without any previous assumption. In this experi-
mental section we analyze the two limiting cases, in which
only one contribution is present, but we will analyze the data
following the general workflow, which identifies the pres-
ence as well as the absence of each component.
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FIG. 7. (Color online) Data analysis of numerically simulated
time series. [(a) and (b)] Probability density function for a Brown-
ian particle under the influence of the force-field (simulated data
30 s at 16 kHz); in (a) the force field is purely conservative, while
in (b) it has a rotational component. [(c) and (d)] Invariant function,
Sacr(Ar) (black line) and Dccp(Ar) (gray—red in the online
version—Iline) (calculated from the simulated data windowed in 1 s
intervals and averaged). [(e) and (f)] Force fields reconstructed from
the simulated data.

A. Experimental setup

Figure 8 illustrates a schematic of the setup.

A chamber is prepared using two cover slips separated by
a 50 wm spacer, and filled with a water solution containing
polystyrene spheres (radius R=0.5 um) and solid spheres
made of a birefringent material (calcium vaterite crystals
(CVC) spheres, radius R=1.5+0.2 um [40]).

The optical setup includes up to five independent beams:
a 633 nm beam and up to four 1064 nm steerable beams with
controllable polarization. The 633 nm beam generated by a
HeNe laser is expanded (in order to overfill the objective)
and focused by a 100 X 1.3 NA objective inside the chamber.
This beam is used to trap a polystyrene sphere as a Brownian
probe. The trap force constant can be adjusted by changing
the intensity of the beam. In detecting the particle position,
the forward scattered light from the trapped sphere is colli-
mated by a 50X objective onto a quadrant photodiode

(QPD).
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CW633nm
17mwW

FIG. 8. (Color online) Experimental setup: 1, 100X 1.3 NA ob-
jective; 2, 50X objective.

The external force field acting on the probe was produced
by a fluid flow generated using the spinning CVC spheres.
The 1064 nm beams are generated by a Nd:YAG laser,
whose maximum power is 900 mW. The beam from the laser
passes through three beam splitters in a cascade obtaining
four independent beams with the same power and linear po-
larization. A quarter wave plate is introduced along their path
in order to allow one to switch the beam polarization be-
tween linear and circular. These beams are used to manipu-
late the CVC spheres, which can be made spin through the
transfer of light orbital angular momentum [40]. They are
all-optically controlled, i.e., their positions are controlled by
the optical trap position, their rotation rates are controlled by
the beam powers, and their spinning states are controlled by
the polarization state of the light (namely, they spin in the
presence of circular polarization). Their angular velocity is
measured by analyzing the polarization state of the probe
beam transmitted through the particle [40].

B. Conservative force field

In order to produce a conservative force field, two CVCs
were placed as shown in Fig. 9(a). In Fig. 9(b) the generated
hydrodynamic force field is presented as it is theoretically
expected to be [36].

In Fig. 9(c), the invariant functions S,p(Af) (black line)
and D ¢p(At) (gray—green in the online version—Iline), and
respective fitting to the theoretical shapes are presented. The
vanishing of Dq¢p(Af) tells us that =0 in this case, while
the fitting to Sycr(A) permits us to find the values of ¢
=18 s7! and A¢=6 s~!. The value of the rotation of the co-
ordinate system in this case is 32°.
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FIG. 9. (Color online) Conservative force field. (a) Experimen-
tal configuration with two spinning spheres (the horizontal x and
vertical y axes are centered on the probe particle) and (b) hydrody-
namic component of the force field (from hydrodynamic theory).
The black bar represents a length of 1 wm. (¢) Experimental invari-
ant functions S,cr(Ar) (black line) and D¢cp(At) (gray—red in the
online version—line), and respective fitting to the theoretical shape
(dotted lines). (d) Experimental probability density function and
reconstructed total force field; inset: reconstructed hydrodynamic
force field. The reconstruction is accurate only over the region vis-
ited by the Brownian particle. Ten datasets obtained during 15 s
with sampling rate 2000 Hz were acquired and analyzed.

The total force field can now be reconstructed over the
region visited by the Brownian particle: k,=225 fN/um and
k,=112 fN/um. This force field is presented in Fig. 9(d). We
can now retrieve the hydrodynamic force field by subtracting
the optical force field (k,,=185 fN/um approximatively
constant in all directions), which can be measured in absence
of rotation of the spinning particles [inset in Fig. 9(d)]. This
experimentally measured force field corresponds very well to
the theoretically predicted one [Fig. 9(b)].

C. Rotational force field

In order to produce a rotational force field, four CVCs
were placed as shown in Fig. 10(a), which should theoreti-
cally generate the force field shown in Fig. 10(b). In Fig.
10(c), the invariant functions S, (A7) (black line) and
Dccp(Af) (gray—green in the online version—Iline), and re-
spective fitting to the theoretical shapes are presented. Now
D¢ep(At) is not null and therefore it can be used to fit the
three parameters: ¢=11s"', A¢p=0, and Q=5 rads™!. We
can notice that S,p(Af) can be used for this purpose as well;
however, in this case the sign of () stays undetermined.

The total force field can now be reconstructed over the
region visited by the Brownian particle: k,~k,
=100 fN/um. This force field is presented in Fig. 10(d). We
can now retrieve the hydrodynamic force field by subtracting
the optical force field (k,,,=78 fN/um approximatively con-
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FIG. 10. (Color online) Rotational force field. (a) Experimental
configuration with four spinning spheres (the horizontal x and ver-
tical y axes are centered on the probe particle) and (b) hydrody-
namic component of the force field (from hydrodynamic theory).
The black bar represents a length of 3 wm. (¢) Experimental invari-
ant functions S,p(Af) (black line) and D¢cp(Af) (gray—red in the
online version—line), and respective fitting to the theoretical shape
(dotted lines). (d) Experimental probability density function and
reconstructed total force field; inset: reconstructed hydrodynamic
force field. The reconstruction is accurate only over the region vis-
ited by the Brownian particle. Ten datasets obtained during 15 s
with sampling rate 2000 Hz were acquired and analyzed.

stant in all directions), that can be measured in absence of
rotation of the spinning particles [inset in Fig. 10(d)]. Again,
this experimentally measured force field corresponds very
well to the theoretically predicted one [Fig. 10(b)].
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V. CONCLUSION

We have shown how the PFM can be applied to the de-
tection of locally nonhomogeneous force fields. This has
been achieved by analyzing the ACFs and CCFs of the probe
position time series. We believe that this technique can help
to gain new insights into microscale and molecular-scale
phenomena. In these cases the presence of the Brownian mo-
tion is intrinsic and cannot be disregarded. Therefore this
technique permits one to take advantage of the Brownian
fluctuations of the probe in order to explore the force field
present in its surroundings.

One of the most remarkable advantages of the technique
we propose is that it can be implemented in all existing PFM
setups and even on data acquired in the past. Indeed, it does
not require changes to be made in the physical setup, but
only to analyze the data in a new way. This method can
indeed even be applied to the study of the Brownian particle
trajectories that can be obtained with techniques different
from the PEM technique. The main requisite is that the par-
ticle is confined around a stable equilibrium position where
the first-order Taylor expansion of the force field (6) is a
good approximation.
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